Skip to main content
Version: 0.6.0

Type System

This document describes the type system of KCL, including:

  • Type rules
  • Type checking
  • Type conversion
  • Type inference

Type Rules

Basic Definition

Assertion

All free variables of SS are defined in Γ\Gamma

ΓS\Gamma \vdash S

Γ\Gamma is a variable's well-formed environment, such as x1:T1x_1:T_1, ..., xn:Tnx_n:T_n

The assertion of SS has three forms:

Environment assertion indicates that Γ\Gamma is a well-formed type.

Γ\Gamma \vdash ◇

Well-formed type assertion. In the environment Γ\Gamma, natnat is a type expression.

Γnat\Gamma \vdash nat

Typing judgment assertion. In the environment Γ\GammaEE has the type TT.

ΓE:T\Gamma \vdash E: T

Inference Rules

Representation

ΓS1,...,ΓSnΓS\frac{\Gamma \vdash S_1, ..., \Gamma \vdash S_n}{\Gamma \vdash S}

In the inference rules, uu, vv, and ww are used to represent variables, ii, jj, kk are used to represent integers, aa and bb are used to represent floating point numbers, ss is used to represent strings, cc is used to represent literal values of constants (integers, floating point numbers, strings, boolean), ff is used to represent functions, TT, SS, UU are used to represent types.

Environment Rules

Env ⌀

\frac{}{⌀ \vdash ◇ }

Type Definitions

Type Bool

ΓΓboolean\frac{\Gamma \vdash ◇}{\Gamma \vdash boolean}

Type Int

ΓΓinteger\frac{\Gamma \vdash ◇}{\Gamma \vdash integer}

Type Float

ΓΓfloat\frac{\Gamma \vdash ◇}{\Gamma \vdash float}

Type String

ΓΓstring\frac{\Gamma \vdash ◇}{\Gamma \vdash string}

Type Literal

c{boolean,integer,float,string}Γliteralof(c)\frac{ c \in \{boolean, integer, float, string\}}{\Gamma \vdash literalof(c)}

Type List

ΓT TVoidΓlistof(T)\frac{\Gamma \vdash T \ T \neq Void}{\Gamma \vdash listof(T) }

Type Dict

ΓT1 ΓT2 T1Void  T2VoidΓdictof(Tk=T1,Tv=T2)\frac{\Gamma \vdash T_1 \ \Gamma \vdash T_2\ T_1 \neq Void \ \ T_2 \neq Void}{\Gamma \vdash dictof(T_k=T_1, T_v=T_2)}

Type Struct

ΓT1 ... ΓTn  TiVoid K1KnΓstructof(K1:T1,...,Kn:Tn)\frac{\Gamma \vdash T_{1} \ ... \ \Gamma \vdash T_{n} \ \ T_i \neq Void \ K_1 \neq K_n}{\Gamma \vdash structof(K_1 : T_{1}, ... , K_n : T_{n})}

Type Union

ΓT1 ... ΓTn  TiVoidΓunionof(T1,...,Tn)\frac{\Gamma \vdash T_1 \ ... \ \Gamma \vdash T_n \ \ T_i \neq Void}{\Gamma \vdash unionof(T_1, ..., T_n)}

Type None

ΓΓNone\frac{\Gamma \vdash ◇}{\Gamma \vdash None}

Type Undefined

ΓΓUndefined\frac{\Gamma \vdash ◇}{\Gamma \vdash Undefined}

Type Void

ΓΓVoid\frac{\Gamma \vdash ◇}{\Gamma \vdash Void}

Type Any

ΓΓAny\frac{\Gamma \vdash ◇}{\Gamma \vdash Any}

Type Nothing

ΓΓNothing\frac{\Gamma \vdash ◇}{\Gamma \vdash Nothing}

Typing Judgment Rules

Operand Expr

Exp Truth

ΓΓtrue:boolean\frac{\Gamma \vdash ◇}{\Gamma \vdash true: boolean}
ΓΓfalse:boolean\frac{\Gamma \vdash ◇}{\Gamma \vdash false: boolean}

Exp Int

ΓΓint:integer\frac{\Gamma \vdash ◇}{\Gamma \vdash int: integer}

Exp Flt

ΓΓflt:float\frac{\Gamma \vdash ◇}{\Gamma \vdash flt: float}

Exp Str

ΓΓstr:string\frac{\Gamma \vdash ◇}{\Gamma \vdash str: string}

Exp None

ΓΓnone:none\frac{\Gamma \vdash ◇}{\Gamma \vdash none: none}

Exp Undefined

ΓΓundefined:undefined\frac{\Gamma \vdash ◇}{\Gamma \vdash undefined: undefined}

Expr ListExp

ΓE1:T1 E2:T2 ... En:TnΓ[E1,E2,...,En]:listof sup(T1,T2,...,Tn)\frac{\Gamma \vdash E_1: T_1 \ E_2: T_2 \ ... \ E_n: T_n}{\Gamma \vdash [E_1, E_2, ..., E_n]: listof \ sup(T_1, T_2, ..., T_n)}

Expr ListComp

ΓE1:T1 Γv:T ΓE2:listof T ΓE3:booleanΓ[E1 for v in E2 if E3]:listof(T1)\frac{\Gamma \vdash E_1: T_1 \ \Gamma \vdash v: T \ \Gamma \vdash E_2: listof \ T \ \Gamma \vdash E_3: boolean}{\Gamma \vdash [E_1 \ for \ v \ in \ E_2 \ if \ E_3]: listof(T_1) }

Expr DictExp

ΓEk1:Tk1 ΓEv1:Tv1 ... ΓEkn:TkN ΓEvn:TvNΓ{Ek1:Ev1,...,Ekn:Evn}:dictof(Tk=sup(Tk1,Tk2,...Tkn), Tv=sup(Tv1,Tv2,...,Tvn))\frac{\Gamma \vdash E_{k1}: T_{k1} \ \Gamma \vdash E_{v1}: T_{v1} \ ... \ \Gamma \vdash E_{kn}: T_{kN} \ \Gamma \vdash E_{vn}: T_{vN}}{\Gamma \vdash \{E_{k1}: E_{v1}, ..., E_{{kn}}: E_{vn}\}: dictof(T_{k}=sup(T_{k1}, T_{k2}, ... T_{kn}), \ T_{v}=sup(T_{v1}, T_{v2}, ..., T_{vn}))}

Expr DictComp

ΓE1:Trki ΓE2:Trvi Γv1:Tk Γv2:Tv ΓE3:dictof(Tk, Tv) ΓE4:booleanΓ{E1:E2 for (v1,v2) in E3 if E4}:dictof(Tk=sup(Trk1,Trk2,...,Trkn),Tv=sup(Trv1,Trv2,...,Trvn))\frac{\Gamma \vdash E_1: T_{rki} \ \Gamma \vdash E_2: T_{rvi} \ \Gamma \vdash v_1: T_k \ \Gamma \vdash v_2: T_v \ \Gamma \vdash E_3: dictof(T_{k}, \ T_{v}) \ \Gamma \vdash E_4: boolean}{\Gamma \vdash \{E_1:E_2 \ for \ (v_1, v_2) \ in \ E_3 \ if \ E_4\}: dictof(T_{k}=sup(T_{rk1}, T_{rk2}, ..., T_{rkn}), T_{v}=sup(T_{rv1}, T_{rv2}, ..., T_{rvn})) }

Expr StructExpr

ΓE1:T1 ... ΓEn:Tn K1KnΓ{K1=E1,...,Kn=En}:structof(K1:T1,...,Kn:Tn)\frac{\Gamma \vdash E_{1}: T_{1} \ ... \ \Gamma \vdash E_{n}: T_{n} \ K_1 \neq K_n}{\Gamma \vdash \{K_{1} = E_{1}, ..., K_{{n}} = E_{n}\}: structof(K_1 : T_{1}, ... , K_n : T_{n})}

The literal type is the value type of basic type, the union type is the combination type of types, void, any, nothing are special type references, and there is no direct value expression correspondence.

Primary Expr

Expr Index

ΓE:listof(T) ΓIndex:integerΓE[Index]:T\frac{\Gamma \vdash E: listof(T) \ \Gamma \vdash Index: integer}{\Gamma \vdash E[Index]: T}

Expr Call

ΓE1:T1T2 ΓE2:T1ΓE1 (E2):T2\frac{\Gamma \vdash E_1: T_1 \rightarrow T_2 \ \Gamma \vdash E_2: T_1}{\Gamma \vdash E_1 \ (E_2): T_2}

Expr List Selector

ΓE:listof(T) ΓIndex:integerΓE.[Index]:T\frac{\Gamma \vdash E: listof(T) \ \Gamma \vdash Index: integer}{\Gamma \vdash E.[Index]: T}

Expr Dict Selector

ΓE:dictof(Tk=T1,Tv=T2) ΓS1:string ... ΓSn:stringΓE.{S1,...,Sn}:dictof(Tk=T1,Tv=T2)\frac{\Gamma \vdash E: dictof(T_k = T_1, T_v=T_2) \ \Gamma \vdash S_1: string \ ... \ \Gamma \vdash S_n: string}{\Gamma \vdash E.\{S_1, ..., S_n\}: dictof(T_k = T_1, T_v=T_2)}

Expr Struct Selector

ΓE:structof(K1:T1,...,Kn:Tn) ΓKi:stringΓE.Ki:Ti\frac{\Gamma \vdash E: structof(K_1 : T_{1}, ... , K_n : T_{n}) \ \Gamma \vdash K_i: string}{\Gamma \vdash E.K_i: T_{i}}

Unary Expr

Expr +

ΓE:T   T{integer,float}Γ +E:T\frac{\Gamma \vdash E: T \ \ \ T \in \{integer, float\}}{\Gamma \vdash \ +E: T}

Expr -

ΓE:T   T{integer,float}Γ E:T\frac{\Gamma \vdash E: T \ \ \ T \in \{integer, float\}}{\Gamma \vdash \ -E: T}

Expr ~

ΓE:integerΓ  E:integer\frac{\Gamma \vdash E: integer}{\Gamma \vdash \ ~E: integer}

Expr not

ΓE:booleanΓ not E:boolean\frac{\Gamma \vdash E: boolean}{\Gamma \vdash \ not \ E: boolean}

Binary Expr

Expr op, op \in {-, /, %, **, //}

ΓE1:T   ΓE2:T   T{integer,float}ΓE1 op E2:T\frac{\Gamma \vdash E_1: T \ \ \ \Gamma \vdash E_2: T \ \ \ T \in \{integer, float\}}{\Gamma \vdash E_1 \ op \ E_2: T}

Expr +

ΓE1:T   ΓE2:T   T{integer,float,string,listof(T1)}ΓE1 + E2:T\frac{\Gamma \vdash E_1: T \ \ \ \Gamma \vdash E_2: T \ \ \ T \in \{integer, float, string, listof(T_1)\}}{\Gamma \vdash E_1 \ + \ E_2: T}

Expr *

ΓE1:T1   ΓE2:T2    (T1==T2{integer,float}) or (T1==interger and T2  {string,listof(T3)}) or (T2==interger and T1  {string,listof(T3)})ΓE1  E2:T\frac{\Gamma \vdash E_1: T_1 \ \ \ \Gamma \vdash E_2: T_2 \ \ \ \ (T_1==T_2 \in \{integer, float\}) \ or \ (T_1 == interger \ and \ T_2 \ \in \ \{string, listof(T_3)\}) \ or \ (T_2 == interger \ and \ T_1 \ \in \ \{string, listof(T_3)\})} {\Gamma \vdash E_1 \ * \ E_2: T}

Expr %

ΓE1:interger   ΓE2:integerΓE1 % E2:interger\frac{\Gamma \vdash E_1: interger \ \ \ \Gamma \vdash E_2: integer}{\Gamma \vdash E_1 \ \% \ E_2: interger}

Expr op, op \in {or, and}

ΓE1:boolean   ΓE2:booleanΓE1 op E2:boolean\frac{\Gamma \vdash E_1: boolean \ \ \ \Gamma \vdash E_2: boolean}{\Gamma \vdash E_1 \ op \ E_2: boolean}

示例

Expr and

ΓE1:boolean   ΓE2:booleanΓE1 and E2:boolean\frac{\Gamma \vdash E_1: boolean \ \ \ \Gamma \vdash E_2: boolean}{\Gamma \vdash E_1 \ and \ E_2: boolean}

Expr op, op \in {==, !=, <, >, <=, >=}

ΓE1:T   ΓE2:TΓE1 op E2:boolean\frac{\Gamma \vdash E_1: T \ \ \ \Gamma \vdash E_2: T}{\Gamma \vdash E_1 \ op \ E_2: boolean}

Expr >

ΓE1:boolean   ΓE2:booleanΓE1 > E2:boolean\frac{\Gamma \vdash E_1: boolean \ \ \ \Gamma \vdash E_2: boolean}{\Gamma \vdash E_1 \ > \ E_2: boolean}

Expr op, op \in {&, ^, ~, <<, >>}

ΓE1:integer   ΓE2:integerΓE1 op E2:integer\frac{\Gamma \vdash E_1: integer \ \ \ \Gamma \vdash E_2: integer}{\Gamma \vdash E_1 \ op \ E_2: integer}

Expr |

ΓE1:T   ΓE2:T   T{integer,listof(T1),dictof(Tk,Tv),structof(K1=T1,...,Kn=Tn)}ΓE1  E2:T\frac{\Gamma \vdash E_1: T \ \ \ \Gamma \vdash E_2: T \ \ \ T \in \{integer, listof(T_1), dictof(T_k, T_v), structof(K_1=T_1, ..., K_n=T_n)\}}{\Gamma \vdash E_1 \ | \ E_2: T}

Expr op, op \in {in, not in}

ΓE1:string   ΓE2:T   T{dictof,structof}ΓE1 op E2:bool\frac{\Gamma \vdash E_1: string \ \ \ \Gamma \vdash E_2: T \ \ \ T \in \{dictof, structof\}}{\Gamma \vdash E_1 \ op \ E_2: bool}
ΓE1:T   ΓE2:listof(S),TSΓE1 op E2:bool\frac{\Gamma \vdash E_1: T \ \ \ \Gamma \vdash E_2: listof(S), T \sqsubseteq S}{\Gamma \vdash E_1 \ op \ E_2: bool}

Expr op \in {is, is not}

ΓE1:T   ΓE2:TΓE1 op E2:bool\frac{\Gamma \vdash E_1: T \ \ \ \Gamma \vdash E_2: T}{\Gamma \vdash E_1 \ op \ E_2: bool}

IF Expr

Expr If

ΓE1:boolean   ΓE2:T   ΓE3:TΓif E1 then E2 else E3:T\frac{\Gamma \vdash E_1: boolean \ \ \ \Gamma \vdash E_2: T \ \ \ \Gamma \vdash E_3: T}{\Gamma \vdash if \ E_1 \ then \ E_2 \ else \ E_3: T}

Stmt

Stmt If

ΓE1:boolean   ΓS1:Void   ΓS2:VoidΓif E1 then S1 else S2:Void\frac{\Gamma \vdash E_1: boolean \ \ \ \Gamma \vdash S_1: Void \ \ \ \Gamma \vdash S_2: Void}{\Gamma \vdash if \ E_1 \ then \ S_1 \ else \ S_2: Void}

Stmt Assign

Γid:T0   ΓT1   ΓE:T2Γid:T1 = E:Void\frac{\Gamma \vdash id: T_0 \ \ \ \Gamma \vdash T_1 \ \ \ \Gamma \vdash E: T_2}{\Gamma \vdash id: T_1 \ = \ E : Void}

Type Alias

Γid:T0   ΓT1Γtype id = T1:Void\frac{\Gamma \vdash id: T_0 \ \ \ \Gamma \vdash T_1}{\Gamma \vdash type \ id \ = \ T_1 : Void}

Union

List Union

Γ listof(T)   Γ listof(S)Γ listof(unionof(T,S))\frac{\Gamma \vdash \ listof(T) \ \ \ \Gamma \vdash \ listof(S)}{\Gamma \vdash \ listof(unionof(T, S))}

Dict Union

Γ dictof(T1,T2)   Γ dictof(S1,S2)Γ dictof(unionof(T1,S1),unionof(T2,S2))\frac{\Gamma \vdash \ dictof(T_1, T_2) \ \ \ \Gamma \vdash \ dictof(S_1, S_2)}{\Gamma \vdash \ dictof(unionof(T_1, S_1), unionof(T_2, S_2))}

Struct Union

Define two structures: structof(K1:T1,...,Kn:Tn)structof(H1:S1,...,Hm:Sn)structof(K_{1}: T_{1}, ..., K_{n}: T_{n}),structof(H_{1}: S_{1}, ..., H_{m}: S_{n})

Define their union types:

structof(J1:U1,...,Jp:Un)=structof(K1:T1,...,Kn:Tn)structof(H1:S1,...,Hm:Sn)structof(J_{1}: U_{1}, ..., J_{p}: U_{n}) = structof(K_{1}: T_{1}, ..., K_{n}: T_{n}) \bigcup structof(H_{1}: S_{1}, ..., H_{m}: S_{n})

Example

structof()  structof(H1:T1,...,Hm:Tn)=structof(H1:T1,...,Hm:Tn)structof() \ \bigcup \ structof(H_{1}: T_{1}, ..., H_{m}: T_{n}) = structof(H_{1}: T_{1}, ..., H_{m}: T_{n})
structof(K1:T1,...,Kn:Tn)  structof(H1:S1,...,Hm:Sn)=structof(K1:T1)::(structof(K2:T2,...,Kn:Tn)  structof(H1:S1,...,Hm:Sn))structof(K_{1}: T_{1}, ..., K_{n}: T_{n}) \ \bigcup \ structof(H_{1}: S_{1}, ..., H_{m}: S_{n}) = structof(K_1: T_1) :: (structof(K_{2}: T_{2}, ..., K_{n}: T_{n}) \ \bigcup \ structof(H_{1}: S_{1}, ..., H_{m}: S_{n}))

where "::" denotes the operation of adding a dual to a structure, which is defined as follows:

structof(K1:T1)::structof()=structof(K1:T1)structof(K_{1}: T_{1}) :: structof() = structof(K_{1}: T_{1})
structof(K1:T1)::structof(K1:T1,...,Kn:Tn)=structof(K1:union_op(T1,T1),...,Kn:Tn)structof(K_{1}: T_{1}) :: structof(K_{1}: T_{1}', ..., K_n: T_{n}) = structof(K_{1}: union\_op(T_{1}, T_{1}'), ..., K_{n}: T_{n})
structof(K1:T1)::structof(K2:T2,...,Kn:Tn)=structof(K2:T2)::structof(K1:T1)::structof(K3:T3,...,Kn:Tn)structof(K_{1}: T_{1}) :: structof(K_{2}: T_{2}, ..., K_n: T_{n}) = structof(K_{2}: T_2) :: structof(K_{1}: T_1) :: structof(K_{3}: T_3, ..., K_{n}: T_{n})

Based on this, the union of two structures is defined as:

Γstructof(K1:T1,...,Kn:Tn) Γstructof(H1:S1,...,Hm:Sn) structof(J1:U1,...,Jp:Un)=structof(K1:T1,...,Kn:Tn)structof(H1:S1,...,Hm:Sn)Γstructof(J1:U1,...,Jp:Un))\frac{\Gamma \vdash structof(K_{1}: T_{1}, ..., K_{n}: T_{n}) \ \Gamma \vdash structof(H_{1}: S_{1}, ..., H_{m}: S_{n}) \ structof(J_{1}: U_{1}, ..., J_{p}: U_{n}) = structof(K_{1}: T_{1}, ..., K_{n}: T_{n}) \bigcup structof(H_{1}: S_{1}, ..., H_{m}: S_{n})}{\Gamma \vdash structof(J_{1}: U_{1}, ..., J_{p}: U_{n}))}

where union_op(T1,T2)union\_op(T_1, T_2) denotes different types of judgment operations for the same KiK_i.

  • When T1T_1 and T2T_2 have the partial order relation. If T1T2T_1 \sqsubseteq T_2, return T2T_2, otherwise return T1T_1, which is the minimum upper bound
  • When T1T_1 and T2T_2 have no partial order relationship, there are three optional processing logic:
    • Structure union failed, return a type error.
    • Return the type of the latter T2T_2.
    • Return the type unionof(T1,T2)unionof (T_1, T_2).

Here, we need to choose the appropriate processing method according to the actual needs.

Structure inheritance can be regarded as a special union. The overall logic is similar to that of union, but in union_op(T1,T2)union\_op(T_1, T_2) for the same KiK_i, the different types of judgment operations are as follows:

  • When T1T_1 and T2T_2 have the partial order relation and T1T2T_1 \sqsubseteq T_2, return T1T_1, that is, only if T1T_1 is the lower bound of T2T_2, the lower bound of T1T_1 shall prevail.
  • Otherwise, a type error is returned.

Through such inheritance design, we can achieve hierarchical, bottom-up and layer-by-layer contraction of type definition.

Operation

KCL supports operations on structure attributes in the form of popEp op E. That is, for the given structure A:structof(K1:T1,...,Kn:Tn)A: structof(K_{1}: T_{1}, ..., K_{n}: T_{n}), the path pp in the structure is specified with the value of EE (such as union, assign, insert, etc.).

Define the following update operations:

ΓA:structof(K1:T1,...,Kn:Tn)  Γp(K1,...,Kn) Γe:Tkk1,...,kknA{p op e}:{K1:T1,...,Kn:Tn}{p:T}\frac{{\Gamma\vdash A: structof(K_{1}: T_{1}, ..., K_{n}: T_{n})}  {\Gamma\vdash p \in (K_{1}, ..., K_{n})} \ {\Gamma\vdash e:T}   k \neq k_1, ..., k \neq k_n} { A \{p \ op \ e\}:\{K_1:T_1, ..., K_n:T_n\}∪\{p:T\}}

That is to say, the operation on the path pp is essentially a union of two structures. The rules for the same name attribute type union depend on the situation. For example, the path pp is an identifier p=k1p=k_1 that can be used as a field name k1k_1, and the field name in structure A is also k1k_1, its type is T1T_1, and the type of the expression ee is also T1T_1, then

ΓA:structof(K1:T1,...,Kn:Tn)  Γp=K1 Γe:T1kk1,...,kknA{p op e}:{K1:T1,...,Kn:Tn}\frac{{\Gamma\vdash A: structof(K_{1}: T_{1}, ..., K_{n}: T_{n})}  {\Gamma\vdash p = K_{1}} \ {\Gamma\vdash e:T_1}   k \neq k_1, ..., k \neq k_n} { A \{p \ op \ e\}:\{K_1:T_1, ..., K_n:T_n\}}

Note:

  • The type T1T_1 of the expression ee have the same type with the original attribute of the same name K1K_1. It can be relaxed appropriately according to the actual situation, such as the type of ee T1\sqsubseteq T_1 is enough.
  • For the operation of nested multi-layer structures, the above rules can be used recursively.

Type Partial Order

Basic Types

Type TType AnyType \ T \sqsubseteq Type \ Any
Type NothingType TType \ Nothing \sqsubseteq Type \ T
Type NothingType BoolType AnyType \ Nothing \sqsubseteq Type \ Bool \sqsubseteq Type \ Any
Type NothingType IntType AnyType \ Nothing \sqsubseteq Type \ Int \sqsubseteq Type \ Any
Type NothingType FloatType AnyType \ Nothing \sqsubseteq Type \ Float \sqsubseteq Type \ Any
Type IntType FloatType \ Int \sqsubseteq Type \ Float
Type NothingType StringType AnyType \ Nothing \sqsubseteq Type \ String \sqsubseteq Type \ Any
Type NothingType LiteralType AnyType \ Nothing \sqsubseteq Type \ Literal \sqsubseteq Type \ Any
Type NothingType ListType AnyType \ Nothing \sqsubseteq Type \ List \sqsubseteq Type \ Any
Type NothingType DictType AnyType \ Nothing \sqsubseteq Type \ Dict \sqsubseteq Type \ Any
Type NothingType StructType AnyType \ Nothing \sqsubseteq Type \ Struct \sqsubseteq Type \ Any
Type NothingType NoneType AnyType \ Nothing \sqsubseteq Type \ None \sqsubseteq Type \ Any
Type NothingType VoidType AnyType \ Nothing \sqsubseteq Type \ Void \sqsubseteq Type \ Any
Type NothingType AnyType \ Nothing \sqsubseteq Type \ Any

Literal Type

Type Literal(Bool)Type BoolType \ Literal(Bool) \sqsubseteq Type \ Bool
Type Literal(Int)Type IntType \ Literal(Int) \sqsubseteq Type \ Int
Type Literal(Float)Type FloatType \ Literal(Float) \sqsubseteq Type \ Float
Type Literal(String)Type StringType \ Literal(String) \sqsubseteq Type \ String

Union Type

Type XType Union(X,Y)Type \ X \sqsubseteq Type \ Union(X, Y)

Introspect

Type XType XType \ X \sqsubseteq Type \ X

Example

Type BoolType BoolType \ Bool \sqsubseteq Type \ Bool
Type IntType IntType \ Int \sqsubseteq Type \ Int
Type FloatType FloatType \ Float \sqsubseteq Type \ Float
Type StringType StringType \ String \sqsubseteq Type \ String
Type ListType ListType \ List \sqsubseteq Type \ List
Type DictType DictType \ Dict \sqsubseteq Type \ Dict
Type StructType StructType \ Struct \sqsubseteq Type \ Struct
Type NothingType NothingType \ Nothing \sqsubseteq Type \ Nothing
Type AnyType AnyType \ Any \sqsubseteq Type \ Any
Type Union(TypeInt,TypeBool)Type Union(TypeInt,TypeBool)Type \ Union(Type Int, Type Bool) \sqsubseteq Type \ Union(Type Int, Type Bool)

Transmit

Type XType Z if Type XType Y and Type Y Type ZType \ X \sqsubseteq Type \ Z \ if \ Type \ X \sqsubseteq Type \ Y \ and \ Type \ Y \sqsubseteq \ Type \ Z

Contained

Type List(T1)Type List(T2) if T1T2Type \ List(T_1) \sqsubseteq Type \ List(T_2) \ if \ T_1 \sqsubseteq T_2
Type Dict(Tk1,Tv1)Type Dict(Tk2,Tv2) if Tk1Tk2 and Tv1Tv1Type \ Dict(T_{k1}, T_{v1}) \sqsubseteq Type \ Dict(T_{k2}, T_{v2}) \ if \ T_{k1} \sqsubseteq T_{k2} \ and \ T_{v1} \sqsubseteq T_{v1}
Type Structure(K1:Ta1,K2:Ta2,...,Kn:Tan)Type Structure(K1:Tb1,K2:Tb2,...,Kn:Tbn) if Ta1Tb1 and Ta2Tb2 and ... and TanTbnType \ Structure(K_1: T_{a1}, K_2: T_{a2}, ..., K_n: T_{an}) \sqsubseteq Type \ Structure(K_1: T_{b1}, K_2: T_{b2}, ..., K_n: T_{bn}) \ if \ T_{a1} \sqsubseteq T_{b1} \ and \ T_{a2} \sqsubseteq T_{b2} \ and \ ... \ and \ T_{an} \sqsubseteq T_{bn}

Inheritance

Type Struct AType Struct B if A inherits BType \ Struct \ A \sqsubseteq Type \ Struct \ B \ if \ A \ inherits \ B

None

Type NoneType X,X{Type Nothing, Type Void}Type \ None \sqsubseteq Type \ X, X \notin \{Type \ Nothing, \ Type \ Void\}

Undefined

Type UndefinedType X,X{Type Nothing, Type Void}Type \ Undefined \sqsubseteq Type \ X, X \notin \{Type \ Nothing, \ Type \ Void\}

Equality

  • Commutative law
Type Union(X,Y)==Type Union(Y,X)Type \ Union(X, Y) == Type \ Union(Y, X)

Example

Type Union(Int,Bool)==Type Union(Bool,Int)Type \ Union(Int, Bool) == Type \ Union(Bool, Int)
  • Associative law
Type Union(Union(X,Y),Z)==Type Union(X,Union(Y,Z))Type \ Union(Union(X, Y), Z) == Type \ Union(X, Union(Y, Z))

Example

Type Union(Union(Int,String),Bool)==Type Union(Int,Union(String,Bool))Type \ Union(Union(Int, String), Bool) == Type \ Union(Int, Union(String, Bool))
  • Idempotent
Type Union(X,X)==Type XType \ Union(X, X) == Type \ X

Example

Type Union(Int,Int)==Type IntType \ Union(Int, Int) == Type \ Int

Partial order derivation

Type Union(X,Y)==Type Y if XYType \ Union(X, Y) == Type \ Y \ if \ X \sqsubseteq Y

Example

Assume that Struct A inherits Struct B

Type Union(A,B)==Type BType \ Union(A, B) == Type \ B

Idempotency is a special case of partial order reflexivity

List

Type List(X)==Type List(Y) if X==YType \ List(X) == Type \ List(Y) \ if \ X == Y

Dict

Type Dict(Tk,Tv)==Type Dict(Sk,Sv) if Tk==Sk and Tv==SvType \ Dict(T_k, T_v) == Type \ Dict(S_k, S_v) \ if \ T_k == S_k \ and \ T_v == S_v

Struct

Type Struct(K1:T1,K2:T2,...,Kn:Tn)==Type Struct(K1:S1,K2:S2,...,Kn:Sn) if T1==S1 and ... and Tn==SnType \ Struct(K_1: T_{1}, K_2: T_{2}, ..., K_n: T_{n}) == Type \ Struct(K_1: S_{1}, K_2: S_{2}, ..., K_n: S_{n}) \ if \ T_{1} == S_{1} \ and \ ... \ and \ T_{n} == S_{n}

Partial Order Checking

Type X==Type Y if Type XType Y and Type Y Type XType \ X == Type \ Y \ if \ Type \ X \sqsubseteq Type \ Y \ and \ Type \ Y \sqsubseteq \ Type \ X

Basic Methods

  • sup(t1: T, t2: T) -> T: Calculate the minimum upper bound of two types t1 and t2 according to the type partial order. The union type needs to be created dynamically.
  • typeEqual(t1: T, t2: T) -> bool: Compare whether the two types t1 and t2 are equal.
  • typeToString(t: T) -> string: Resolve and convert the type to the corresponding string type recursively from top to bottom.

Sup Function

  • Type parameters, condition types and other characteristics are not considered temporarily.
  • Use an ordered collection to store all types of UnionType.
  • Use a global map to store all generated union types according to the name of UnionType.
  • Calculate the inclusion relationship between types according to the partial order relationship.
// The Sup function returns the minimum supremum of all types in an array of types
func Sup(types: T[]) -> T {
typeOf(types, removeSubTypes=true)
}

// Build a sup type from types [T1, T2, ... , Tn]
func typeOf(types: T[], removeSubTypes: bool = false) -> T {
assert isNotNullOrEmpty(types)
// 1. Initialize an ordered set to store the type array
typeSet: Set[T] = {}
// 2. Add the type array to the ordered set for sorting by the type id and de-duplication
addTypesToTypeSet(typeSet, types)
// 3. Remove sub types according to partial order relation rules e.g. sub schema types
if removeSubTypes {
removeSubTypes(typeSet)
}
if len(typeSet) == 1 {
// If the typeSet has only one type, return it
return typeSet[0]
}
// 4. Get or set the union type from the global union type map
id := getIdentifierFromTypeSet(typeSet)
unionType := globalUnionTypeMap.get(id)
if !unionType {
unionType = createUnionType(typeSet) // Build a new union type
globalUnionTypeMap.set(id, unionType)
}
return unionType
}

// Add many types into the type set
func addTypesToTypeSet(typeSet: Set[T], types: T[]) -> void {
for type in types {
addTypeToTypeSet(typeSet, type)
}
}

// Add one type into the type set
func addTypeToTypeSet(typeSet: Set[T], type: T) -> void {
if isUnion(type) {
return addTypesToTypeSet(typeSet, toUnionOf(type).types)
}
// Ignore the void type check
if !isVoid(type) {
// De-duplication according to the type of id
typeSet.add(type)
}
}

func removeSubTypes(types: Set[T]) -> void {
for source in types {
for target in types {
if !typeEqual(source, target) {
// If the two types have an inheritance relationship, the base class is retained, or if the two types have a partial order relationship according to the relation table.
if (isPartialOrderRelatedTo(source, target)) {
types.remove(source)
}
}
}
}
}

// isPartialOrderRelatedTo function Determine whether two types have a partial order relationship `source \sqsubseteq target`
// according to the partial order relationship table and rules
func isPartialOrderRelatedTo(source: T, target: T) -> bool {
assert isNotNullOrEmpty(source)
assert isNotNullOrEmpty(target)
if isNoneOrUndefined(source) and !isNothing(target) and !isVoid(target) {
return true
}
if isAny(target) {
return true
}
if typeEqual(source, target) {
return true
}
if isUnion(target) and source in target.types {
return true
}
// Literal Type
if (isStringLiteral(source) and isString(target)) or \
(isBooleanLiteral(source) and isBool(target)) or \
(isIntLiteral(source) and isInt(target)) or \
(isFloatLiteral(source) and isFloat(target)) {
return true
}
if isInt(source) and isFloat(target) {
return true
}
if isList(source) and isList(target) {
return isPartialOrderRelatedTo(toListOf(source).eleType, toListOf(target).eleType
}
if isDict(source) and isDict(target) {
return isPartialOrderRelatedTo(toDictOf(source).keyType, toDictOf(target).keyType) and isPartialOrderRelatedTo(toDictOf(source).valueType, toDictOf(target).valueType)
}
if isStruct(source) and isStruct(target) {
if isTypeDerivedFrom(source, target) {
return true
}
// Empty Object
if len(target.keys) == 0 {
return true
}
if any([key Not in source.keys for key in target.keys]) {
return false
}
for key, sourceType in (source.keys, source.types) {
targetType = getKeyType(target, key) ? getKeyType(target, key) : anyTypeOf()
if !isPartialOrderRelatedTo(sourceType, targetType) {
return false
}
}
return true
}
return false
}

Type Checking

Checker

The type checker traverses the syntax tree from top to bottom through syntax-directed translation, and determines whether the program structure is a well-typed program according to context-sensitive training rules.

The type checker depends on type rules, and the information of type environment Γ\Gamma is recorded in the symbol table. Use abstract syntax for type expressions, such as listof (T). When the type check fails, a type mismatch error is generated, and the error message is generated according to the syntax context.

Basic Methods

  1. isUpperBound(t1, t2): supUnify(t1, t2) == t2
  2. supUnify(t1, t2):
  • For the foundation type, sup(t1, t2) is calculated according to the partial order relationship
  • For list, dict, Struct, recursively supUnify the types of elements
  • When there is no partial order relationship, return Nothing

Checking Logic

Operand Expr

Did:TD \to id: T

env.addtype(id.entry, T.type)

TbooleanT \to boolean

T.type = boolean

TintegerT \to integer

T.type = integer

TfloatT \to float

T.type = float

TstringT \to string

T.type = string

Tc, c{boolean,integer,float,string}T \to c, \ c \in \{boolean, integer, float, string\}

T.type = literalof(c)

TNoneT \to None

T.type = None

TUndefinedT \to Undefined

T.type = Undefined

T [T1]T \to \ [T_1]

T.type = listof (T1.type)

T{T1:T2}T \to { \{T_1: T_2\} }

T.type = dictof (T1.type: T2.type)

T{N1:T1,N2:T2,...,Nn:Tn}T \to { \{N_1: T_1, N2: T_2, ..., N_n: T_n\} }

T.type = structof (N1: T1.type, N2: T2.type, ..., Nn: Tn.type)

EidE \to id

E.type = env.lookup(id.entry)

E[E1,E2,...,En]E \to [E_1, E_2, ..., E_n]

func listExpr(E) {
supe = sup([e.type for e in E]])
E.type = listof(type)
}

E[E1 for E2 in E3 if E4]E \to [E_1 \ for \ E_2 \ in \ E_3 \ if \ E_4]

func listComp(E) {
if !typeEqual(E4.type, boolean) {
raise type_error
}
if !isUpperBound(listof(Any), E3.type) {
raise type_error(E)
}
if !isUpperBound(E3.type, E2.type) {
raise type_error(E)
}
E.type = listof(E1.type)
}

E{Ek1:Ev1,...,Ekn:Evn}E \to \{E_{k1}: E_{v1}, ..., E_{kn}: E_{vn}\}

func dictExpr(E) {
supk := sup([e.type for e in E.keys()]])
supv := sup([e.type for e in E.values()]])
E.type = dictof(supk, supv)
}

E{E1:E2 for (E3,E4) in E5 if E6}E \to \{E_1:E_2 \ for \ (E_3, E_4) \ in \ E_5 \ if \ E_6\}

func dictComp(E) {
if !typeEqual(E6.type, boolean) {
raise type_error(E)
}
if !isUpperBound(dictof(Any, Any), E5.type) {
raise type_error(E)
}
if !isUpperBound(E5.type, dictof(E3.type, E4.type)) {
raise type_error(E)
}
E.type = dictof(E1.type, E2.type)
}

E{Ek1:Ev1,...,Ekn:Evn}E \to \{E_{k1}: E_{v1}, ..., E_{kn}: E_{vn}\}

func dictExpr(E) {
supk := sup(Ek1, ..., Ekn)
supv = sup(Ev1, ..., Evn)
E.type = dictof(supk, supv)
}

E{N1=E1,...,Nn=En}E \to \{N_{1} = E_{1}, ..., N_{{n}} = E_{n}\}

func structExpr(E) {
Struct = structof()
for n, e in E {
Struct.add(n, e.type)
}
E.type = Struct
}

Primary Expr

EE1[E2]E \to E_1[E_2]

func sliceSuffix(E) {
if !isUpperBound(listof(Any), E.E1.type) {
raise type_error(E)
}
if typeEqual(E.E2.type, integer) {
raise type_error(E)
}
E.type = E.E1.type.eleType
}

EE1(E2)E \to E_1(E_2)

func callSuffix(E) {
if !typeEqual(E.E1.type, func) {
raise type_error(E)
}
if !isUpperBound(listof(E.E1.arguType), E.E2.type) {
raise type_error(E)
}
E.type = E.E1.returnType
}

Unary Expr

According to the reasoning rules of each binocular operator, take + as an example.

E+E1E \to + E_1

func Plus(E) {
if !typeEqual(E.E1.type, [integer, float]) {
raise type_error(E)
}
E.type = E.E1.type
}

Binary Expr

According to the reasoning rules of each binocular operator, take % as an example.

EE1 E \to E_1 \ % \ E_2

func Mod(E) {
if !(typeEqual(E.E1.type, [integer, float]) && typeEqual(E.E2.type, [integer, float])) {
raise type_error(E)
}
E.type = E.E1.type
}

IF Binary Expr

EifE1 then E2else E3E \to if E_1 \ then \ E_2 else \ E_3

func ifExpr(E) {
if !typeEqual(E.type, boolean) {
raise type_error(E)
}
if !typeEqual(E_2.type, E_3.type) {
raise type_error(E)
}
E.type = E_2.type
}

Stmt

Sif E then S1 else S2S \to if \ E \ then \ S_1 \ else \ S_2

func ifStmt(S) {
if !typeEqual(S.E.type, boolean) {
raise type_error(E)
}
if !typeEqual(S.S1.type, S.S2.type) {
raise type_error(E)
}
S.type = S.S1.type
}

Sid:T=ES \to id: T = E

Sid=TES \to id = T E

func assignStmt(S) {
tpe := env.lookup(id.entry)
if tpe != nil && tpe != S.T {
raise type_error(E)
}
if isUpperBound(tpe, E.type) {
raise type_error(E)
}
env.addtype(id.entry, T.type)
}

Type Conversion

Basic Definition

Through syntax-directed translation, the value types involved in the operation are automatically converted according to the operator characteristics.

Conversion Rules

EE1 op E2,,op{+,,,/,%,,//}E \to E_1 \ op \ E_2, , op \in \{+, -, *, /, \%, **, //\}

func binOp(E) {
if E.E1.type == integer and E.E2.type == integer {
E.type = integer
} else if E.E1.type == integer and E.E2.type == float {
E.type = float
} else if E.E1.type == float and E.E2.type == integer {
E.type = float
} else if E.E1.type == float and E.E2.type == float {
E.type = float
}
}

Type Inference

Basic Definition

  • Type rule derivation and type reconstruction in case of incomplete type information
  • Derive and reconstruct the data structure types in the program from the bottom up, such as basic type, e.g., list, dict and struct types.

Basic Methods

  1. typeOf(expr, subst): The input is the expression and substitution rule set, and the type of expr and the new substitution rule set are returned.
  2. unifier(t1, t2, subst, expr): Try substitution with t1=t2. If the substitution is successful (no occurrence and no conflict), add t1=t2 to the subst and return the subst. Otherwise, an error has occurred or there is a conflict.

Inferential Logic

Eid=E1E \to id = E_1

func assignExpr(E, subst) {
return unifier(E.id.type, E.E_1.type, subst, E)
}

unifier(t1,t2,subst,expr)substunifier(t1, t2, subst, expr) \rightarrow subst

func unifier(t1, t2, subst, expr) {
t1 = applySubstToTypeEquation(t1, subst)
t2 = applySubstToTypeEquation(t2, subst)

if t1 == t2 {
return subst
}

if isTypeVar(t1) {
if isNoOccur(t1, t2) {
addTypeEquationToSubst(subst, t1, t2)
return subst
} else {
raise occurrence_violation_error(t1, t2, expr)
}
}

if isTypeVar(t2) {
if isNoOccur(t2, t1) {
addTypeEquationToSubst(subst, t2, t1)
return subst
} else {
raise occurrence_violation_error(t2, t1, expr)
}
}

if isList(t1) and isList(t2) {
return unifier(toListOf(t1).eleType, toListOf(t2).eleType, subst, expr)
}
if isDict(t1) and isDict(t2) {
dict1of := toDictOf(t1)
dict2of := toDictOf(t2)
subst = unifier(dict1of.keyType, dict2of.keyType, subst, expr)
subst = unifier(dict1of.valueType, dict2of.valueType, subst, expr)
return subst
}
if isStruct(t1) and isStruct(t2) {
Struct1of := tostructof(t1)
Struct2of := tostructof(t2)
for key, _ in Struct1of {
subst = unifier(t1[key].type, t2[key].type, subst, expr)
}
return subst
}

raise unification_error(t1, t2, expr)
}

func applySubstToTypeEquation(t, subst) {
// walks through the type t, replacing each type variable by its binding in the substitution
σ. If a variable is Not bound in the substitution, then it is left unchanged.
if isBasicType(t) {
return t
}
if isList(t) {
return listOf(applySubstToTypeEquation(toListOf(t).eleType, subst))
}
if isDict(t) {
dictof := toDictOf(t)
kT := applySubstToTypeEquation(dictof.keyType, subst)
vT := applySubstToTypeEquation(dictof.valueType, subst)
return dictOf(kT, vT)
}
if isStruct(t) {
structof := tostructof(t)
s := structof()
for key, type in Struct1of {
kT := applySubstToTypeEquation(type, subst)
s.add(key, kT)
}
return s
}
if hasTypeVar(t) {
for tvar in t.vars {
if tvar in subst {
*tvar = subst[tvar]
}
}
}
return t
}

func addTypeEquationToSubst(subst, tvar, t) {
// takes the substitution σ and adds the equation tv = t to it
for _, t in subst {
for tvar in t.vars {
tmp := applyOneSubst(tsvar, tvar, t)
*tvar = tmp
}
}
subst.add(tvar, t)
}

func applyOneSubst(t0, tvar, t1) {
// substituting t1 for every occurrence of tv in t0.
if isBasicType(t0) {
return t0
}
if isList(t0) {
return listOf(applyOneSubst(toListOf(t).eleType, tvar, t1))
}
if isDict(t0) {
dictof := toDictOf(t)
kT := applyOneSubst(dictof.keyType, tvar, t1)
vT := applyOneSubst(dictof.valueType, tvar, t1)
return dictOf(kT, vT)
}
if isStruct(t0) {
structof := tostructof(t)
s := structof()
for key, type in Struct1of {
kT := applyOneSubst(type, tvar, t1)
s.add(key, kT)
}
return s
}
if t0 == tvar {
return t1
}
return t0
}

func isNoOccur(tvar, t) {
// No variable bound in the substitution occurs in any of the right-hand sides of the substitution.
if isBasicType(t) {
return true
}
if isList(t) {
return isNoOccur(tvar, toListOf(t).eleType)
}
if isDict(t) {
dictof := toDictOf(t)
return isNoOccur(tvar, dictof.keyType) and isNoOccur(tvar, dictof.valueType)
}
if isStruct(t) {
structof := tostructof(t)
noOccur := true
for _, type in structof {
noOccur = noOccur and isNoOccur(tvar, type)
}
return noOccur
}
return tvar != t
}

Example

Normal Inference

T : {
a = 1
b = "2"
c = a * 2
d = {
d0 = [a, c]
}
}

x: T = {
a = 10
}

Occurrence Violation Error

T = {
a = a
}

Type Unification Error

T : {
a = 1
}

T : {
a = "1"
}

Reference