Differences between KCL and Helm
In this section, we introduced KCL's Kubernetes configuration management scenarios more richly by comparing it with other Kubernetes configuration management tools, such as Helm.
Helm is a tool for generating deployable manifests for Kubernetes objects, which philosophically takes the task of generating the final manifests in two distinct forms. Helm is an imperative templating tool for managing Kubernetes packages called charts. Charts are a templated version of your yaml manifests with a subset of Go Templating mixed throughout, as well it is a package manager for kubernetes that can package, configure, and deploy/apply the helm charts onto kubernetes clusters.
In KCL, the user can directly write the configuration instead of template files with more tools and IDE plugin support that needs to be modified in the corresponding code in the corresponding place, eliminating the cost of reading basic YAML. At the same time, the user can reuse the configuration fragments by code, avoiding massive copying and pasting of YAML configuration. The information density is higher, and it is not easy to make mistakes through KCL.
A classic example of helm chart configuration management is used to explain the differences between Helm and KCL in Kubernetes resource configuration management.
Helm
Helm has the concepts of values.yaml
and template
. In general, the Helm chart project is generally a directory including a Chart.yaml
.
We can execute the following command line to obtain a typical Helm Chart project.
- Create a directory named
workload-helm
to hold the chart project
# Create a directory to hold the chart project
mkdir workload-helm
# Create a workload-helm/Chart.yaml
cat <<EOF > workload-helm/Chart.yaml
apiVersion: v2
appVersion: 0.3.0
description: A helm chart to provision standard workloads.
name: workload
type: application
version: 0.3.0
EOF
# Create a workload-helm/values.yaml
cat <<EOF > workload-helm/values.yaml
service:
type: ClusterIP
ports:
- name: www
protocol: TCP
port: 80
targetPort: 80
containers:
my-container:
image:
name: busybox:latest
command: ["/bin/echo"]
args:
- "-c"
- "Hello World!"
resources:
limits:
cpu: 100m
memory: 128Mi
requests:
cpu: 100m
memory: 128Mi
EOF
- Create a directory to hold templates
# Create a directory to hold templates
mkdir workload-helm/templates
# Create a workload-helm/templates/helpers.tpl
cat <<EOF > workload-helm/templates/helpers.tpl
{{/*
Expand the name of the chart.
*/}}
{{- define "workload.name" -}}
{{- default .Release.Name .Values.nameOverride | trunc 63 | trimSuffix "-" }}
{{- end }}
{{/*
Create a default fully qualified app name.
We truncate at 63 chars because some Kubernetes name fields are limited to this (by the DNS naming spec).
If release name contains chart name it will be used as a full name.
*/}}
{{- define "workload.fullname" -}}
{{- \$name := default .Chart.Name .Values.nameOverride }}
{{- if contains \$name .Release.Name }}
{{- .Release.Name | trunc 63 | trimSuffix "-" }}
{{- else }}
{{- printf "%s-%s" .Release.Name \$name | trunc 63 | trimSuffix "-" }}
{{- end }}
{{- end }}
{{/*
Create chart name and version as used by the chart label.
*/}}
{{- define "workload.chart" -}}
{{- printf "%s-%s" .Chart.Name .Chart.Version | replace "+" "_" | trunc 63 | trimSuffix "-" }}
{{- end }}
{{/*
Common labels
*/}}
{{- define "workload.labels" -}}
helm.sh/chart: {{ include "workload.chart" . }}
{{ include "workload.selectorLabels" . }}
{{- if .Chart.AppVersion }}
app.kubernetes.io/version: {{ .Chart.AppVersion | quote }}
{{- end }}
app.kubernetes.io/managed-by: {{ .Release.Service }}
{{- end }}
{{/*
Selector labels
*/}}
{{- define "workload.selectorLabels" -}}
app.kubernetes.io/name: {{ include "workload.name" . }}
app.kubernetes.io/instance: {{ .Release.Name }}
{{- end }}
EOF
cat <<EOF > workload-helm/templates/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: {{ include "workload.name" . }}
labels:
{{- include "workload.labels" . | nindent 4 }}
spec:
selector:
matchLabels:
{{- include "workload.selectorLabels" . | nindent 6 }}
template:
metadata:
labels:
{{- include "workload.selectorLabels" . | nindent 8 }}
spec:
containers:
{{- range \$name, \$container := .Values.containers }}
- name: {{ \$name }}
image: "{{ $container.image.name }}"
{{- with \$container.command }}
command:
{{- toYaml \$container.command | nindent 12 }}
{{- end }}
{{- with \$container.args }}
args:
{{- toYaml \$container.args | nindent 12 }}
{{- end }}
{{- with \$container.env }}
env:
{{- toYaml \$container.env | nindent 12 }}
{{- end }}
{{- with \$container.volumeMounts }}
volumeMounts:
{{- toYaml \$container.volumeMounts | nindent 12 }}
{{- end }}
{{- with \$container.livenessProbe }}
livenessProbe:
{{- toYaml \$container.livenessProbe | nindent 12 }}
{{- end }}
{{- with \$container.readinessProbe }}
readinessProbe:
{{- toYaml \$container.readinessProbe | nindent 12 }}
{{- end }}
{{- with \$container.resources }}
resources:
{{- toYaml \$container.resources | nindent 12 }}
{{- end }}
{{- end }}
EOF
cat <<EOF > workload-helm/templates/service.yaml
{{ if .Values.service }}
apiVersion: v1
kind: Service
metadata:
name: {{ include "workload.name" . }}
labels:
{{- include "workload.labels" . | nindent 4 }}
spec:
type: {{ .Values.service.type }}
selector:
{{- include "workload.selectorLabels" . | nindent 4 }}
{{- with .Values.service.ports }}
ports:
{{- toYaml . | nindent 4 }}
{{- end }}
{{- end }}
EOF
Thus, we can get a basic Helm chart directory
.
├── Chart.yaml
├── templates
│ ├── _helpers.tpl
│ ├── deployment.yaml
│ └── service.yaml
└── values.yaml
We can display the real deployment configuration of through the following command.
helm template workload-helm
The output YAML is
---
# Source: workload-helm/templates/service.yaml
apiVersion: v1
kind: Service
metadata:
name: release-name
labels:
helm.sh/chart: workload-0.3.0
app.kubernetes.io/name: release-name
app.kubernetes.io/instance: release-name
app.kubernetes.io/version: "0.3.0"
app.kubernetes.io/managed-by: Helm
spec:
type: ClusterIP
selector:
app.kubernetes.io/name: release-name
app.kubernetes.io/instance: release-name
ports:
- name: www
port: 80
protocol: TCP
targetPort: 80
---
# Source: workload-helm/templates/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: release-name
labels:
helm.sh/chart: workload-0.3.0
app.kubernetes.io/name: release-name
app.kubernetes.io/instance: release-name
app.kubernetes.io/version: "0.3.0"
app.kubernetes.io/managed-by: Helm
spec:
selector:
matchLabels:
app.kubernetes.io/name: release-name
app.kubernetes.io/instance: release-name
template:
metadata:
labels:
app.kubernetes.io/name: release-name
app.kubernetes.io/instance: release-name
spec:
containers:
- name: my-container
image: "busybox:latest"
command:
- /bin/echo
args:
- -c
- Hello World!
resources:
limits:
cpu: 100m
memory: 128Mi
requests:
cpu: 100m
memory: 128Mi
KCL
In KCL, we provide the ability similar to Helm values.yaml
to configure dynamic parameters through configuration files kcl.yaml
.
We can execute the following command line to obtain a typical KCL project with the kcl.yaml
.
- Create a directory named
workload-kcl
to hold the KCL project
# Create a directory to hold the KCL project
mkdir workload-kcl
# Create a workload-kcl/kcl.yaml
cat <<EOF > workload-kcl/kcl.yaml
kcl_options:
- key: containers
value:
my-container:
image:
name: busybox:latest
command: ["/bin/echo"]
args:
- "-c"
- "Hello World!"
resources:
limits:
cpu: 100m
memory: 128Mi
requests:
cpu: 100m
memory: 128Mi
- key: service
value:
type: ClusterIP
ports:
- name: www
protocol: TCP
port: 80
targetPort: 80
EOF
- Create KCL files to hold kubernetes resources.
# Create a workload-kcl/deployment.k
cat <<EOF > workload-kcl/deployment.k
apiVersion = "apps/v1"
kind = "Deployment"
metadata = {
name = "release-name"
labels = {
"app.kubernetes.io/name" = "release-name"
"app.kubernetes.io/instance" = "release-name"
}
}
spec = {
selector.matchLabels = metadata.labels
template.metadata.labels = metadata.labels
template.spec.containers = [
{
name = name
image = container.image.name
command = container.command
command = container.args
env = container.env
resources = container.resources
} for name, container in option("containers") or {}
]
}
EOF
cat <<EOF > workload-kcl/service.k
apiVersion = "v1"
kind = "Service"
metadata = {
name = "release-name"
labels = {
"app.kubernetes.io/name" = "release-name"
"app.kubernetes.io/instance" = "release-name"
}
}
spec = {
selector.matchLabels = metadata.labels
type = option("service", default={})?.type
ports = option("service", default={})?.ports
}
EOF
In the above KCL code, we declare the apiVersion
, kind
, metadata
, spec
and other attributes of Kubernetes Deployment
and Service
resources, and assign the corresponding contents respectively. In particular, we assign metadata.labels
to spec.selector.matchLabels
and spec.template.metadata.labels
. It can be seen that the data structure defined by KCL is more compact than Helm template or YAML, and configuration reuse can be realized by defining local variables.
In KCL, we can dynamically receive external parameters through conditional statements and the option
builtin function, and set different configuration values to generate resources.
We can get the Deployment
and Service
resources throw the following command:
Deployment
$ kcl workload-kcl/deployment.k -Y workload-kcl/kcl.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: release-name
labels:
app.kubernetes.io/name: release-name
app.kubernetes.io/instance: release-name
spec:
selector:
matchLabels:
app.kubernetes.io/name: release-name
app.kubernetes.io/instance: release-name
template:
metadata:
labels:
app.kubernetes.io/name: release-name
app.kubernetes.io/instance: release-name
spec:
containers:
- name: my-container
image: busybox:latest
command:
- -c
- Hello World!
resources:
limits:
cpu: 100m
memory: 128Mi
requests:
cpu: 100m
memory: 128Mi
Service
$ kcl workload-kcl/service.k -Y workload-kcl/kcl.yaml
apiVersion: v1
kind: Service
metadata:
name: release-name
labels:
app.kubernetes.io/name: release-name
app.kubernetes.io/instance: release-name
spec:
selector:
matchLabels:
app.kubernetes.io/name: release-name
app.kubernetes.io/instance: release-name
type: ClusterIP
ports:
- name: www
protocol: TCP
port: 80
targetPort: 80
In addition, we can overwrite the value in the kcl.yaml
file with the -D
parameter, such as executing the following command.
$ kcl workload-kcl/service.k -Y workload-kcl/kcl.yaml -D service=None
apiVersion: v1
kind: Service
metadata:
name: release-name
labels:
app.kubernetes.io/name: release-name
app.kubernetes.io/instance: release-name
spec:
selector:
matchLabels:
app.kubernetes.io/name: release-name
app.kubernetes.io/instance: release-name
type: null
ports: null
Summary
It can be seen that, compared with Helm, KCL reduces the number of configuration files and code lines by means of code generation on the basis of configuration reuse and coverage, And like Helm, it is a pure client solution, which can move the configuration and policy verification to the left as far as possible without additional dependency or burden on the cluster, or even without a real Kubernetes cluster.
Helm can define reusable templates in the .tpl
file and support other templates to reference it. However, only defined templates can be reused. In a complex Helm chart project, we need to define a lot of additional basic templates. Compared with the cumbersome writing method of Helm, all contents in KCL are variables. No additional syntax is required to specify templates. Any variables can be referenced to each other.
In addition, there are a large number of {{- include }}
, nindent
and toYaml
tag characters that have nothing to do with actual logic in Helm. You need to calculate spaces and indents at each reference. In KCL, there are fewer useless codes, and there is no need for too many {{*}}
to mark code blocks. The information density is higher, and the indentation and space have been completely liberated.
In fact, KCL and Helm are not antagonistic. We can even use KCL to write HelmRelease templates and provide programmable extension capabilities for existing Helm chart to write YAML validators.
Future Plan
We also expect that KCL models and constraints can be managed as a package (this package has only KCL files). For example, the Kubernetes models and constraints can be used out of the box. Users can generate configurations or verify existing configurations, and can simply extend the models and constraints users want through KCL inheritance.
At this stage, you can use tools such as Git or OCI Registry As Storage (ORAS) to manage KCL configuration versions.
More Documents
- KCL Github Repo: https://github.com/kcl-lang/kcl
- KCL Website: https://kcl-lang.io